On the Galois group of generalized Laguerre polynomials
نویسندگان
چکیده
منابع مشابه
On the Galois Group of generalized Laguerre polynomials
Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α ∈ Q−Z<0, Filaseta and Lam have shown that the nth degree Generalized Laguerre Polynomial L (α) n (x) = ∑n j=0 ( n+α n−j ) (−x)/j! is irreducible for all large enough n. We use our criterion to show that, under these conditions, the Galois group of L (α) n (x) is...
متن کاملLAGUERRE POLYNOMIALS WITH GALOIS GROUP Am FOR EACH
In 1892, D. Hilbert began what is now called Inverse Galois Theory by showing that for each positive integer m, there exists a polynomial of degree m with rational coefficients and associated Galois group Sm, the symmetric group on m letters, and there exists a polynomial of degree m with rational coefficients and associated Galois group Am, the alternating group on m letters. In the late 1920’...
متن کاملOn classifying Laguerre polynomials which have Galois group the alternating group par
We show that the discriminant of the generalized Laguerre polynomial L n (x) is a non-zero square for some integer pair (n, α), with n ≥ 1, if and only if (n, α) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n (x) over Q is the alternating group An. For example, we e...
متن کاملOn the Genus of Generalized Laguerre Polynomials
belong to one of the three family of orthogonal polynomials, the other two being Jacobi and Legendre. In addition to their important roles in mathematical analysis, these polynomials also feature prominently in algebra and number theory. Schur ([7], [8]) pioneered the study of Galois properties of specializations of these orthogonal polynomials, and Feit [1] used them to solve the inverse Galoi...
متن کاملSpecializations of Generalized Laguerre Polynomials
Three specializations of a set of orthogonal polynomials with “8 different q’s” are given. The polynomials are identified as q-analogues of Laguerre polynomials, and the combinatorial interpretation of the moments give infinitely many new Mahonian statistics on permutations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2005
ISSN: 1246-7405
DOI: 10.5802/jtnb.505